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DANIEL ŠTEFANKOVIČ1 and ERIC VIGODA2

ABSTRACT

We address phylogenetic reconstruction when the data is generated from a mixture
distribution. Such topics have gained considerable attention in the biological community with
the clear evidence of heterogeneity of mutation rates. In our work we consider data coming
from a mixture of trees which share a common topology, but differ in their edge weights
(i.e., branch lengths). We first show the pitfalls of popular methods, including maximum
likelihood and Markov chain Monte Carlo algorithms. We then determine in which
evolutionary models, reconstructing the tree topology, under a mixture distribution, is
(im)possible. We prove that every model whose transition matrices can be parameterized by
an open set of multilinear polynomials, either has non-identifiable mixture distributions, in
which case reconstruction is impossible in general, or there exist linear tests which identify
the topology. This duality theorem, relies on our notion of linear tests and uses ideas from
convex programming duality. Linear tests are closely related to linear invariants, which were
first introduced by Lake, and are natural from an algebraic geometry perspective.

Key words: phylogeny, maximum likelihood, linear invariants, linear tests, Markov chain Monte
Carlo.

1. INTRODUCTION

AMAJOR OBSTACLE to phylogenetic inference is the heterogeneity of genomic data. For example, mutation
rates vary widely between genes, resulting in different branch lengths in the phylogenetic tree for each

gene. In many cases, even the topology of the tree differs between genes. Within a single long gene, we are
also likely to see variations in the mutation rate, see Hellmann et al. (2005) for a current study on regional
mutation rate variation.

Our focus is on phylogenetic inference based on single nucleotide substitutions. In this paper, we
study the effect of mutation rate variation on phylogenetic inference. The exact mechanisms of single
nucleotide substitutions are still being studied; hence, the causes of variations in the rate of these mutations
are unresolved, see Hellmann et al. (2003), Meunier and Duret (2004), and Webster et al. (2004). In this
paper, we study phylogenetic inference in the presence of heterogeneous data.

For homogenous data, i.e., data generated from a single phylogenetic tree, there is considerable work on
consistency of various methods, such as likelihood (Chang, 1996) and distance methods, and inconsistency
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of other methods, such as parsimony (Felsenstein, 1978) Consistency means that the methods converge to
the correct tree with sufficiently large amounts of data. We refer the interested reader to Felsenstein (2004)
for an introduction to these phylogenetic approaches.

There are several works showing the pitfalls of popular phylogenetic methods when data is generated from
a mixture of trees, as opposed to a single tree. We review these works in detail shortly. The effect of mixture
distributions has been of marked interest recently in the biological community, for instance, see the recent
publications of Kolaczkowski and Thornton (2004), and Mossel and Vigoda (2005).

In our setting, the data is generated from a mixture of trees which have a common tree topology, but can vary
arbitrarily in their mutation rates. We address whether it is possible to infer the tree topology. We introduce
the notion of a linear test. For any mutational model whose transition probabilities can be parameterized
by an open set (see the following subsection for a precise definition), we prove that the topology can be
reconstructed by linear tests, or it is impossible in general due to a non-identifiable mixture distribution.
For several of the popular mutational models we determine which of the two scenarios (reconstruction or
non-identifiability) hold.

The notion of a linear test is closely related to the notion of linear invariants. In fact, Lake’s invariants
are a linear test. There are simple examples where linear tests exist and linear invariants do not (in these
examples, the mutation rates are restricted to some range). However, for the popular mutation models, such as
Jukes-Cantor and Kimura’s 2 parameter model (both of which are closed under multiplication) we have no
such examples. For the Jukes-Cantor and Kimura’s 2 parameter model, we prove the linear tests are essentially
unique (up to certain symmetries). In contrast to the study of invariants, which is natural from an algebraic
geometry perspective, our work is based on convex programming duality.

We present the background material before formally stating our new results. We then give a detailed
comparison of our results with related previous work.

An announcement of the main results of this paper, along with some applications of the technical tools
presented here, are presented in Stefankovic and Vigoda (2007).

1.1. Background

A phylogenetic tree is an unrooted tree T on n leaves (called taxa, corresponding to n species) where
internal vertices have degree three. Let E(T ) denote the edges of T and V (T ) denote the vertices. The
mutations along edges of T occur according to a continuous-time Markov chain. Let Ω denote the states of
the model. The case |Ω| = 4 is biologically important, whereas |Ω| = 2 is mathematically convenient.

The model is defined by a phylogenetic tree T and a distribution π on Ω. Every edge e has an associated
|Ω|× |Ω| rate matrix Re, which is reversible with respect to π, and a time te. Note, since Re is reversible with
respect to π, then π is the stationary vector for Re (i.e., πRe = 0). The rate matrix defines a continuous time
Markov chain. Then, Re and te define a transition matrix Pe = exp(teRe). The matrix is a stochastic matrix
of size |Ω| × |Ω|, and thus defines a discrete-time Markov chain, which is time-reversible, with stationary
distribution π (i.e., πPe = π).

Given
−→
P = (Pe)e∈E(T ) we then define the following distribution on labellings of the vertices of T . We first

orient the edges of T away from an arbitrarily chosen root r of the tree. (We can choose the root arbitrarily
since each Pe is reversible with respect to π.) Then, the probability of a labeling � : V (T ) → Ω is

µ′
T,

−→
P

(�) = π(�(r))
∏

−→uv∈E(T )

−→
P uv(�(u), �(v)). (1)

Let µ
T,

−→
P

be the marginal distribution of µ′
T,

−→
P

on the labelings of the leaves of T (µ
T,

−→
P

is a distribution
on Ωn where n is the number of leaves of T ). The goal of phylogeny reconstruction is to reconstruct T (and
possibly

−→
P ) from µ

T,
−→
P

(more precisely, from independent samples from µ
T,

−→
P

).
The simplest four-state model has a single parameter α for the off-diagonal entries of the rate matrix. This

model is known as the Jukes-Cantor model, which we denote as JC. Allowing two parameters in the rate
matrix is Kimura’s two-parameter model, which we denote as K2 (see Section 5.2. for a formal definition).
The K2 model accounts for the higher mutation rate of transitions (mutations within purines or pyrimidines)
compared to transversions (mutations between a purine and a pyrimidine). Kimura’s three-parameter model,
which we refer to as K3, accounts for the number of hydrogen bonds altered by the mutation (see Section 7



for a formal definition of the K3 model). For |Ω| = 2, the model is binary and the rate matrix has a single
parameter α. This model is known as the CFN (Cavender-Farris-Neyman) model. For any examples in this
paper involving the CFN, JC, K2, or K3 models, we restrict the model to rate matrices where all the entries
are positive, and times te which are positive and finite.

We will use M to denote the set of transition matrices obtainable by the model under consideration, i.e.,

M = {Pe = exp(teRe : te and Re are allowed in the model }.

The above setup allows additional restrictions in the model, such as requiring te > 0 which is commonly
required.

In our framework, a model is specified by a set M, and then each edge is allowed any transition matrix
Pe ∈ M. We refer to this framework as the unrestricted framework, since we are not imposing any
dependencies on the choice of transition matrices between edges. This set-up is convenient since it gives a
natural algebraic framework for the model as we will see in some later proofs. A similar set-up was required
in the work of Allman and Rhodes (2007), also to utilize the algebraic framework.

An alternative framework (which is typical in practical works) requires a common rate matrix for all edges,
specifically R = Re for all e. Note that we cannot impose such a restriction in our unrestricted framework,
since each edge is allowed any matrix in M. We will refer to this framework as the common rate framework.
Note, for the Jukes-Cantor and CFN models, the unrestricted and common rate frameworks are identical,
since there is only a single parameter for each edge in these models. We will discuss how our results apply
to the common rate framework when relevant, but the default setting of our results is the unrestricted model.

Returning to our setting of the unrestricted framework, recall under the condition te > 0 the set M is not
a compact set (and is parameterized by an open set as described shortly). This will be important for our work
since our main result will only apply to models where M is an open set. Moreover we will require that M
consists of multilinear polynomials. More precisely, a polynomial p ∈ R[x1, . . . , xm] is multi-linear if for
each variable xi the degree of p in xi is at most 1. Our general results will apply when the model is a set of
multi-linear polynomials which are parameterized by an open set which we now define precisely.

Definition 1. We say that a set M of transition matrices is parameterized by an open set if there exists
a finite set Ω, a distribution π over Ω, an integer m, an open set O ⊆ R

m, and multi-linear polynomials
pij ∈ R[x1, . . . , xm] such that

M = {(pij)Ωi,j=1 | (x1, . . . , xm) ∈ O},

where M is a set of stochastic matrices which are reversible with respect to π (thus π is their stationary
distribution).

Typically the polynomials pij are defined by an appropriate change of variables from the variables
defining the rate matrices. Some examples of models that are paraemeterized by an open set are the general
Markov model considered by Allman and Rhodes (2007); Jukes-Cantor, Kimura’s two-parameter and three-
parameter, and Tamura-Nei models. For the Tamura-Nei model (which is a generalization of Jukes-Cantor
and Kimura’s models), we show in Stefankovic and Vigoda (2007) how the model can be re-parameterized
in a straightforward manner so that it consists of multi-linear polynomials, and thus fits the parameterized by
an open set condition (assuming the additional restriction te > 0).

1.2. Mixture models

In our setting, we will generate assignments from a mixture distribution. We will have a single tree
topology T , a collection of k sets of transition matrices

−→
P1,

−→
P2, . . . ,

−→
Pk where

−→
Pi ∈ ME(T ) and a set of

non-negative reals q1, q2, . . . , qk where
∑

i qi = 1. We then consider the mixture distribution:

µ =
∑

i

qiµT,
−→
Pi

Thus, with probability qi we generate a sample according to µ
T,

−→
Pi

. Note the tree topology is the same for
all the distributions in the mixture (thus there is a notion of a generating topology). In several of our simple
examples we will set k = 2 and q1 = 1/2, thus we will be looking at a uniform mixture of two trees.



1.3. Maximum likelihood and MCMC results

We begin by showing a simple class of mixture distributions where popular phylogenetic algorithms fail. In
particular, we consider maximum likelihood methods, and Markov chain Monte Carlo (MCMC) algorithms
for sampling from the posterior distribution.

In the following, for a mixture distribution µ, we consider the likelihood of a tree T as, the maximum over
assignments of transition matrices

−→
P to the edges of T , of the probability that the tree (T,

−→
P ) generated µ.

Thus, we are considering the likelihood of a pure (non-mixture) distribution having generated the mixture
distribution µ. More formally, the maximum expected log-likelihood of tree T for distribution µ is defined by

LT (µ) = max−→
P ∈ME

L
T,

−→
P

(µ),

where

L
T,

−→
P

(µ) =
∑

y∈Ωn

µ(y) ln(µ
T,

−→
P

(y))

Recall for the CFN, JC, K2 and K3 models, M is restricted to transition matrices obtainable from positive
rate matrices Re and positive times te.

Chang (1996b) constructed a mixture example where likelihood (maximized over the best single tree) was
maximized on the wrong topology (i.e., different from the generating topology). In Chang’s examples one
tree had all edge weights sufficiently small (corresponding to invariant sites). We consider examples with less
variation within the mixture and fewer parameters required to be sufficiently small. We consider (arguably
more natural) examples of the same flavor as those studied by Kolaczkowski and Thornton (2004), who
showed experimentally that in the JC model, likelihood appears to perform poorly on these examples.

Figure 1 shows the form of our examples where C and x are parameters of the example. We consider
a uniform mixture of the two trees in the figure. For each edge, the figure shows the mutation probability,
i.e., it is the off-diagonal entry for the transition matrix. We consider the CFN, JC, K2, and K3 models.

We prove that in this mixture model, maximum likelihood is not robust in the following sense: when
likelihood is maximized over the best single tree, the maximum likelihood topology is different from the
generating topology.

In our example all of the off-diagonal entries of the transition matrices are identical. Hence for each
edge we specify a single parameter and thus we define a set

−→
P of transition matrices for a 4-leaf tree by

a 5-dimensional vector where the i-th coordinate is the parameter for the edge incident leaf i, and the last
coordinate is the parameter for the internal edge.

Here is the statement of our result on the robustness of likelihood.

Theorem 2. Let C ∈ (0, 1/|Ω|). Let
−→
P1 = (C + x, C − x, C − x, C + x, x2) and

−→
P2 = (C − x, C + x,

C + x, C − x, x2). Consider the following mixture distribution on T3:

µx =
(
µ

T3,
−→
P1

+ µ
T3,

−→
P2

)
/2.

1. In the CFN model, for all C ∈ (0, 1/2), there exists x0 > 0 such that for all x ∈ (0, x0) the maximum-
likelihood tree for µx is T1.

2. In the JC, K2 and K3 models, for C = 1/8, there exists x0 > 0 such that for all x ∈ (0, x0) the
maximum-likelihood tree for µx is T1.

Recall, likelihood is maximized over the best pure (i.e., non-mixture) distribution.

FIG . 1. In the binary CFN model, the parameters C and x define the mutation probabilities. For all choices of C and
for x sufficiently small, maximum likelihood tree is different than the generating tree.



Note, for the above theorem, we are maximizing the likelihood over assignments of valid transition matrices
for the model. For the above models, valid transition matrices are those obtainable with finite and positive
times te, and rate matrices Re where all the entries are positive.

A key observation for our proof approach of Theorem 2 is that the two trees in the mixture example are
the same in the limit x → 0. The x = 0 case is used in the proof for the x > 0 case. We expect the above
theorem holds for more a general class of examples (such as arbitrary x, and any sufficiently small function
on the internal edge), but our proof approach requires x sufficiently small. Our proof approach builds upon
the work of Mossel and Vigoda (2005).

Our results also extend to show, for the CFN and JC models, MCMC methods using NNI transitions
converge exponentially slowly to the posterior distribution. This result requires the 5-leaf version of mixture
example from Figure 1. We state our MCMC result formally in Theorem 32 in Section 9 after presenting the
background material. Previously, Mossel and Vigoda (2005) showed a mixture distribution where MCMC
methods converge exponentially slowly to the posterior distribution. However, in their example, the tree
topology varies between the two trees in the mixture.

1.4. Duality theorem: non-identifiablity or linear tests

Based on the above results on the robustness of likelihood, we consider whether there are any methods
which are guaranteed to determine the common topology for mixture examples. We first found that in the
CFN model there is a simple mixture example of size 2, where the mixture distribution is non-identifiable. In
particular, there is a mixture on topology T1 and also a mixture on T3 which generate identical distributions.
Hence, it is impossible to determine the correct topology in the worst case. It turns out that this example
does not extend to models such as JC and K2. In fact, all mixtures in JC and K2 models are identifiable. This
follows from our following duality theorem which distinguishes which models have non-identifiable mixture
distributions, or have an easy method to determine the common topology in the mixture.

We prove, that for any model which is parameterized by an open set, either there exists a linear test (which
is a strictly separating hyperplane as defined shortly), or the model has non-identifiable mixture distributions
in the following sense. Does there exist a tree T , a collection

−→
P1, . . . ,

−→
Pk, and distribution p1, . . . , pk , such

that there is another tree T ′ �= T , a collection
−→
P ′

1, . . . ,
−→
P ′′

k and a distribution p′
1, . . . , p

′
k where:

k∑
i=1

piµT,
−→
Pi

=
k∑

i=1

p′
iµT ′,

−→
P ′

i

Thus, in this case, it is impossible to distinguish these two distributions. Hence, we can not even infer which
of the topologies T or T ′ is correct. If the above holds, we say the model has non-identifiable mixture
distributions.

In contrast, when there is no non-identifiable mixture distribution we can use the following notion of
a linear test to reconstruct the topology. A linear test is a hyperplane strictly separating distributions arising
from two different 4 leaf trees (by symmetry the test can be used to distinguish between the 3 possible
4 leaf trees). It suffices to consider trees with 4 leaves, since the full topology can be inferred from all 4 leaf
subtrees (Bandelt and Dress, 1986).

Our duality theorem uses a geometric viewpoint (for a nice introduction to a geometric approach,
see Kim, 2000). Every mixture distribution µ on a 4-leaf tree T defines a point z ∈ R

N where N = |Ω|4.
For example, for the CFN model, we have z = (z1, . . . , z24) and z1 = µ(0000), z2 = µ(0001), z3 =
µ(0010), . . . , z24 = µ(1111). Let Ci denote the set of points corresponding to distributions µ(Ti,

−→
P ) for the

4-leaf tree Ti, i = 1, 2, 3. A linear test is a hyperplane which strictly separates the sets for a pair of trees.

Definition 3. Consider the 4-leaf trees T2 and T3. A linear test is a vector t ∈ R
|Ω|4 such that tT µ2 > 0

for any mixture distribution µ2 arising from T2 and tT µ3 < 0 for any mixture distribution µ3 arising from T3.

There is nothing special about T2 and T3 - we can distinguish between mixtures arising from any two 4
leaf trees, e. g., if t is a test then t(1 3) distinguishes the mixtures from T1 and the mixtures from T2, where
(1 3) swaps the labels for leaves 1 and 3. More precisely, for all (a1, a2, a3, a4) ∈ |Ω|4,

t(1 3)
a1,a2,a3,a4

= sa4,a2,a3,a1 (2)



Theorem 4. For any model whose set M of transition matrices is parameterized by an open set (of
multilinear polynomials), exactly one of the following holds:

• There exist non-identifiable mixture distributions, or
• There exists a linear test.

For the JC and K2 models, the existence of a linear test follows immediately from Lake’s (1987) linear
invariants. Hence, our duality theorem implies that there are no non-identifiable mixture distributions in this
model. In contrast for the K3 model, we prove there is no linear test, hence there is an non-identifiable
mixture distribution. We also prove that in the K3 model in the common rate matrix framework, there is a
non-identifiable mixture distribution.

To summarize, we show the following:

Theorem 5.

1. In the CFN model, there is an ambiguous mixture of size 2.
2. In the JC and K2 model, there are no ambiguous mixtures.
3. In the K3 model there exists a non-identifiable mixture distribution (even in the common rate matrix

framework).

Steel et al. (1994) previously proved the existence of a non-identifiable mixture distribution in the CFN
model, but their proof was non-constructive and gave no bound on the size of the mixture. Their result had
the more appealing feature that the trees in the mixture were scalings of each other.

Allman and Rhodes (2007) recently proved identifiability of the topology for certain classes of mixture
distributions using invariants (not necessarily linear). Rogers (2001) proved that the topology is identifiable
in the general time-reversible model when the rates vary according to what is known as the invariable sites
plus gamma distribution model. Much of the current work on invariants uses ideas from algebraic geometry,
whereas our notion of a linear test is natural from the perspective of convex programming duality.

Note, that even in models that do not have non-identifability between different topologies, there is non-
identifiability within the topology. An interesting example was shown by Evans and Warnow (2004).

1.5. Outline of paper

We prove, in Section 3, Theorem 4 that a phylogenetic model has a non-identifiable mixture distribution
or a linear test. We then detail Lake’s linear invariants in Section 5, and conclude the existence of a linear
test for the JC and K2 models. In Sections 6 and 7, we prove that there are non-identifiable mixtures in the
CFN and K3 models, respectively. We also present a linear test for a restricted version of the CFN model
in Section 6.3. We prove the maximum likelihood results stated in Theorem 2 in Section 8. The maximum
likelihood results require several technical tools which are also proved in Section 8. The MCMC results are
then stated formally and proved in Section 9.

2. PRELIMINARIES

Let the permutation group S4 act on the 4-leaf trees {T1, T2, T3} by renaming the leaves. For example
(14) ∈ S4 swaps T2 and T3, and fixes T1. For π ∈ Sn, we let Tπ denote tree T permuted by π. It is easily
checked that the following group K (Klein group) fixes every Ti:

K = {(), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ≤ S4. (3)

Note that K � S4, i. e., K is a normal subgroup of S4.



For weighted trees we let S4 act on (T,
−→
P ) by changing the labels of the leaves but leaving the weights of

the edges untouched. Let π ∈ Sn and let T ′ = Tπ . Note that the distribution µT ′,w is just a permutation of
the distribution µT,w:

µ
T ′,

−→
P

(aπ1 , . . . , aπn
) = µ

T,
−→
P

(a1, . . . , an). (4)

The actions on weighted trees and on distributions are compatible:

µ(T,
−→
P )π = (µ

T,
−→
P

)π.

3. DUALITY THEOREM

In this section we prove the duality theorem (i.e., Theorem 4).
Our assumption that the transition matrices of the model are parameterized by an open set implies the

following observation.

Observation 6. For models parameterized by an open set, the coordinates of µ′
T,w are multi-linear

polynomials in the parameters.
We now state a classical result that allows one to reduce the reconstruction problem to trees with 4 leaves.

Note there are three distinct leaf-labeled binary trees with 4 leaves. We will call them T1, T2, T3 see Figure 2.
For a tree T and a set S of leaves, let T |S denote the induced subgraph of T on S where internal vertices

of degree 2 are removed.

Theorem 7 [Bandelt and Dress (1986)]. For distinct leaf-labeled binary trees T and T ′ there exist a
set S of 4 leaves where T |S �= T ′|S . Hence, the set of induced subgraphs on all 4-tuples of leaves determines
a tree.

The above theorem also simplifies the search for non-identifiable mixture distributions.

Corollary 8. If there exists a non-identifiable mixture distribution then there exists a non-identifiable
mixture distribution on trees with 4 leaves.

Recall from the Introduction, the mixtures arising fromTi form a convex set in the space of joint distributions
on leaf labelings. A test is a hyperplane strictly separating the mixtures arising from T2 and the mixtures
arising from T3. For general disjoint convex sets, a strictly separating hyperplane need not exist (e. g., take
C1 = {(0, 0)} and C2 = {(0, y) | y > 0} ∪ {(x, y) |x > 0}). The sets of mixtures are special - they are
convex hulls of images of open sets under a multi-linear polynomial map.

Lemma 9. Let p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) be multi-linear polynomials in x1, . . . , xn. Let p =
(p1, . . . , pm). Let D ∈ R

n be an open set. Let C be the convex hull of {p(x) |x ∈ D}. Assume that 0 �∈ C.
There exists s ∈ R

m such that sT p(x) > 0 for all x ∈ D.

Proof. Suppose the polynomial pi is a linear combination of the other polynomials, i.e., pi(x) =∑
j �=i cjpj(x). Let p′ = (p1, . . . , pi−1, pi+1, . . . , pm). Let C ′ be the convex hull of {p′(x) |x ∈ D}. Then

(y1, . . . , yi−1, yi+1, . . . , ym) �→
y1, . . . , yi−1,

∑
j �=i

cjyj , yi+1, . . . , ym



FIG . 2. All leaf-labeled binary trees with n = 4 leaves.



is a bijection between points in C ′ and C. Note, 0 �∈ C ′. There exists a strictly separating hyperplane between
0 and C (i.e., there exists s ∈ R

m such that sT p(x) > 0 for all x ∈ D) if and only if there exists a strictly
separating hyperplane between 0 and C ′ (i.e., there exists s′ ∈ R

m such that s′T p′(x) > 0 for all x ∈ D).
Hence, without loss of generality, we can assume that the polynomials p1, . . . , pm are linearly independent.

Since C is convex and 0 �∈ C, by the separating hyperplane theorem, there exists s �= 0 such that
sT p(x) ≥ 0 for all x ∈ D. If sT p(x) > 0 for all x ∈ D we are done.

Now suppose sT p(a) = 0 for some a ∈ D. If a �= 0, then by translating D by −a and changing the
polynomials appropriately (namely, pj(x) := pj(x + a)), without loss of generality, we can assume a = 0.

Let r(x1, . . . , xn) = sT p(x1, . . . , xn). Note that r is multi-linear and r �= 0 because p1, . . . , pm are
linearly independent. Since a = 0, we have r(0) = 0 and hence r has no constant monomial.

Let w be the monomial of lowest total degree which has a non-zero coefficient in r. Consider y =
(y1, . . . , ym) where yj �= 0 for xj which occur in w and yj = 0 for all other xj . Then, r(y) = w(j) since
there are no monomials of smaller degree, and any other monomials contain some yj which is 0. Hence by
choosing y sufficiently close to 0, we have y ∈ D (since D is open) and r(y) < 0 (by choosing an appropriate
direction for y). This contradicts the assumption that s is a separating hyperplane. Hence r = 0 which is a
contradiction with the linear independence of the polynomials p1, . . . , pm. �

We now prove our duality theorem.

Proof of Theorem 4. Clearly there cannot exist both a non-identifiable mixture and a linear test. Let
Ci be the convex set of mixtures arising from Ti (for i = 2, 3). Assume that C2 ∩ C3 = ∅, i. e., there is no
non-identifiable mixture in M. Let C = C2 − C3. Note that C is convex, 0 �∈ C, and C is the convex hull
of an image of open sets under multi-linear polynomial maps (by Observation 6). By Lemma 3 there exists
s �= 0 such that sT x > 0 for all x ∈ C. Let t = s − s(1 4) (where s(1 4) is defined as in (2)). Let µ2 ∈ C2 and
let µ3 = µ

(1 4)
2 where µ

(1 4)
2 is defined analogously to s(1 4). Then

tT µ2 = (s − s(1 4))T µ2 = sT µ2 − sT µ3 = sT (µ2 − µ3) > 0.

Similarly for µ3 ∈ C3 we have tT µ3 < 0 and hence t is a test.

4. SIMPLIFYING THE SEARCH FOR A LINEAR TEST

The CFN, JC, K2, and K3 models all have a natural group-theoretic structure. We show some key properties
of linear tests utilizing this structure. These properties will simplify proofs of the existence of linear tests in
JC and K2 (and restricted CFN) models and will also be used in the proof of the non-existence of linear tests
in K3 model. Our main objective is to use symmetry inherent in the phylogeny setting to drastically reduce
the dimension of the space of linear tests.

Symmetric phylogeny models have a group of symmetries G ≤ SΩ (G is the intersection of the
automorphism groups of the weighted graphs corresponding to the matrices in M). The probability of a
vertex labeling of T does not change if the labels of the vertices are permuted by an element of G. Thus
the elements of Ωn which are in the same orbit of the action of G on Ωn have the same probability in any
distribution arising from the model.

Let O′ be the orbits of Ω4 under the action of G. Let O be the orbits of O′ under the action of K. Note that
the action of (1 4) on O is well defined (because K is a normal subgroup of S4). For each pair o1, o2 ∈ O
that are swapped by (1 4) let

�o1,o2(µ) =
∑
a∈o1

µ(a) −
∑
a∈o2

µ(a). (5)

Lemma 10. Suppose that M has a linear test s. Then M has a linear test t which is a linear combination
of the �o1,o2 .



Proof. Let s be a linear test. Let

t′ =
∑
g∈K

sg and t = t′ − t′(1 4).

Let µ2 be a mixture arising from T2. For any g ∈ K the mixture µg
2 arises from T2 and hence

(t′)T µ2 =
∑
g∈K

(sg)T µ2 =
∑
g∈K

sT (µg
2) > 0.

Similarly (t′)T µ3 < 0 for µ3 arising from T3 and hence t′ is a linear test.
Now we show that t is a linear test as well. Let µ2 arise from T2. Note that µ3 = µ

(1 4)
2 arises from T3 and

hence

tT µ2 = (t′ − t′(14))T µ2 = (t′)T µ2 − (t′)T µ3 > 0.

Similarly t(µ3) < 0 for µ3 arising from T3 and hence t is a linear test.
Note that t is zero on orbits fixed by (1 4). On orbits o1, o2 swapped by (1 4) we have that t has opposite

value (i. e., a on o1, and −a on o2 for some a). Hence t is a linear combination of the �o1,o2 . �

4.1. A simple condition for a linear test

For the later proofs, it will be convenient to label the edges by matrices which are not allowed by the
phylogenetic models. For example the identity matrix I (which corresponds to zero length edge) is an invalid
transition matrix, i.e., I �∈ M, for the models considered in this paper.

The definition (1) is continuous in the entries of the matrices and hence for a weighting by matrices in
cl(M) (the closure of M) the generated distribution is arbitrarily close to a distribution generated from the
model.

Observation 11. A linear test for M (which is a strictly separating hyperplane for M) is a separating
hyperplane for cl(M).

The above observation follows from the fact that if a continuous function f : cl(A) → R is positive on
some set A then it is non-negative on cl(A).

Suppose that the identity matrix I ∈ cl(M). Let µ arise from T2 with weights such that the internal edge
has weight I . Then µ2 arises also from T3 with the same weights. A linear test has to be positive for mixtures
form T2 and negative for mixtures from T3. Hence we have:

Observation 12. Let µ arise from T2 with weights such that the internal edge has transition matrix I .
Let t be a linear test. Then tT µ = 0.

5. LINEAR TESTS FOR JC AND K2

In this section, we show a linear test for JC and K2 models. In fact, we show that the linear invariants
introduced by Lake (1987) are linear tests. We expect that this fact is already known, but we include the proof
for completeness and since it almost elementary given the preliminaries from the previous section.

5.1. A linear test for the Jukes-Cantor model

To simplify many of the upcoming expressions throughout the following section, we center the transition
matrix for the Jukes-Cantor (JC) model around its stationary distribution in the following manner. Recall the
JC model has ΩJC = {0, 1, 2, 3} and its semigroup MJC consists of matrices

MJC(x̂) =
1
4
E +


3x̂ −x̂ −x̂ −x̂
−x̂ 3x̂ −x̂ −x̂
−x̂ −x̂ 3x̂ −x̂
−x̂ −x̂ −x̂ 3x̂

 ,



where E is the all ones matrix (i.e., E(i, j) = 1 for all 0 ≤ i, j < |Ω|) and 0 < x̂ < 1/4.
We refer to x̂ as the centered edge weight. Thus, a centered edge weight of x̂ = 1/4 (which is not valid)

means both endpoints have the same assignment. Whereas x̂ = 0 (also not valid) means the endpoints are
independent.

The group of symmetries of ΩJC is GJC = S4. There are 15 orbits in Ω4
JC under the action of GJC (each

orbit has a representative in which i appears before j for any i < j). The action of K further decreases the
number of orbits to 9. Here we list the 9 orbits and indicate which orbits are swapped by (1 4):

0000 , 0110 , 0123 ,
0112
0120 ,

0111
0100
0010
0001

, 0011 ↔ 0101 ,
0122
0012 ↔ 0121

0102 . (6)

By Lemma 10, every linear test in the JC model is a linear combination of

t1 = µ(0011) − µ(0101), and

t2 = µ(0122) − µ(0121) − µ(0102) + µ(0012). (7)

We will show that t2 − t1 is a linear test and that there exist no other linear tests (i. e., all linear tests are
multiples of t2 − t1).

Lemma 13. Let µ be a single-tree mixture arising from a tree T on 4 leaves. Let t be defined by

tT µ = t2 − t1 = µ(0122) − µ(0121) + µ(0101)

−µ(0011) + µ(0012) − µ(0102). (8)

Let µi arise from Ti, for i = 1, 2, 3. We have

tT µ1 = 0, tT µ2 > 0, and tT µ3 < 0.

In particular t is a linear test.

Proof. Label the 4 leaves as v1, . . . , v4, and let x̂1, . . . , x̂4 denote the centered edge weight of the edge
incident to the respective leaf. Let x̂5 denote the centered edge weight of the internal edge.

Let µj arise from Tj with centered edge weights x̂1, . . . , x̂5, j ∈ {1, 2, 3}. Let Φj be the multi-linear
polynomial tT µj . If x̂4 = 0 then µj does not depend on the label of v4 and hence, for all a ∈ ΩJC ,

Φj = µj(012a) − µj(012a) + µj(010a) − µj(001a) + µj(001a) − µj(010a) = 0.

Thus, x̂4 divides Φj . The ti are invariant under the action of K (which is transitive on 1, 2, 3, 4) and hence
Φj is invariant under the action of K. Hence x̂i divides Φj for i = 1, . . . , 4. We have

Φj = x̂1x̂2x̂3x̂4�(x̂5),

where �(x̂5) is a linear polynomial in x̂5.
Let µ′

1 arise from T1 with x̂1 = · · · = x̂4 = 1/4. In leaf-labelings with non-zero probability in µ′
1 the

labels of v1, v4 agree and the labels of v2, v3 agree. None of the leaf-labelings in (8) satisfy this requirement
and hence Φ1 = 0 if x̂1 = · · · = x̂4 = 1/4. Hence �(x̂5) is the zero polynomial and Φ1 is the zero polynomial
as well.

Now we consider T2. If x̂5 = 1/4 then, by Observation 12, Φ2 = 0. Thus 1/4 is a root of � and hence
Φ2 = α · x̂1x̂2x̂3x̂4(1/4− x̂5). We plug in x̂5 = 0 and x̂1 = x̂2 = x̂3 = x̂4 = 1/4 to determine α. Let µ′

2 be
the distribution generated by these weights. The leaf-labelings for which µ′

2 is non-zero must have the same
label for v1, v3 and the same label for v2, v4. Thus Φ2 = µ′

2(0101) = 1/16 and hence α = 64. We have

Φ2 = 64x̂1x̂2x̂3x̂4(1 − 4x̂5).

Note that Φ2 is always positive. The action of (1 4) switches the signs of the ti and hence Φ3 = −Φ2. Thus
Φ3 is always negative. �



We now show uniqueness of the above linear test, i.e., any other linear test is a multiple of t2 − t1.

Lemma 14. Any linear test in the JC model is a multiple of (8).

Proof. Let t = α1t1 + α2t2 be a linear test. Let µ1 be the distribution generated by centered weights
x̂2 = x̂4 = x̂5 = 1/4 and x̂1 = x̂3 = 0 on T2. By Observation 12, we must have tT µ1 = 0. Note that

µ1(a1a2a3a4) =
{1/64 if a2 = a4,

0 otherwise.

Hence

tT µ1 = −α1µ1(0101) − α2µ(0121) = −1/64(α1 + α2) = 0.

Thus α1 = −α2 and hence t is a multiple of (8). �

5.2. A linear test for Kimura’s two-parameter model

Mutations between two purines (A and G) or between two pyrimidines (C or T) are more likely than
mutations between a purine and a pyrimidine. Kimura’s two-parameter model (K2) tries to model this fact.

We once again center the transition matrices to simplify the calculations. The K2 model has ΩK2 =
{0, 1, 2, 3} and its semigroup MK2 consists of matrices

MK2(x̂, ŷ) =
1
4
E +


x̂ + 2ŷ −x̂ −ŷ −ŷ

−x̂ x̂ + 2ŷ −ŷ −ŷ
−ŷ −ŷ x̂ + 2ŷ −x̂
−ŷ −ŷ −x̂ x̂ + 2ŷ

 ,

with x̂ ≤ ŷ < 1/4 and x̂ + ŷ > 0. See Felsenstein (2004) for closed form of the transition matrices of the
model in terms of the times te and rate matrices Re. One can then derive the equivalence of the conditions
there with the conditions x̂ ≤ ŷ < 1/4, x̂ + ŷ > 0.

Note, x̂ can be negative, and hence certain transitions can have probability > 1/4 but are always < 1/2.
Observe that MK2(x̂, x̂) = MJC(x̂), i.e., the JC model is a special case of the K2 model.

The group of symmetries is GK2 = 〈(01), (02)(13)〉 (it has 8 elements). There are 36 orbits in Ω4 under
the action of GK2 (each orbit has a representative in which 0 appears first and 2 appears before 3). The action
of K further decreases the number of orbits to 18. The following orbits are fixed by (1 4):

0000 , 0110 , 0220 , 0231 ,
0221
0230 ,

0111
0100
0010
0001

,

0222
0200
0020
0002

,

0223
0210
0120
0112

.

The following orbits are swapped by (1 4):

0011 ↔ 0101, 0022 ↔ 0202, 0123 ↔ 0213,
0122
0023 ↔ 0212

0203 ,

0233
0211
0021
0012

↔
0232
0121
0201
0102

.

By Lemma 10, any linear test for the K2 model is a linear combination of

t1 = µ(0011) − µ(0101),

t2 = µ(0233) + µ(0211) − µ(0232) − µ(0201)

−µ(0121) + µ(0021) − µ(0102) + µ(0012),

t3 = µ(0022) − µ(0202),

t4 = µ(0122) + µ(0023) − µ(0212) − µ(0203),

t5 = µ(0123) − µ(0213)



Lemma 15. Let µ be a single-tree mixture arising from a tree T on 4 leaves. Let t be defined by

tT µ = µ(0122) − µ(0212) + µ(0202) − µ(0022) +

µ(0023) − µ(0203) + µ(0213) − µ(0123). (9)

Let µi arise from Ti, for i = 1, 2, 3. We have

tT µ1 = 0, tT µ2 > 0, and tT µ3 < 0.

In particular t is a linear test.

Proof. Let T = Tj for some j ∈ {1, 2, 3}. Let the transition matrix of the edge incident to leaf vi be
MK2(x̂i, ŷi), and the internal edge has MK2(x̂5, ŷ5). Let µj be the generated distribution, and let Φj be the
multi-linear polynomial tT µj .

If ŷ4 = −x̂4 then the matrix on the edge incident to leaf v4 has the last two columns the same. Hence
roughly speaking this edge forgets the distinction between labels 2 and 3, and therefore in (9), we can do the
following replacements:

0122 → 0123

0202 → 0203

0022 → 0023

0213 → 0212,

and we obtain,

Φj = 0. (10)

Thus x̂4 − ŷ4 divides Φj . Since Φj is invariant under the action of K we have that x̂i − ŷi divides Φj for
i = 1, . . . , 4 and hence

Φj = (x̂1 − ŷ1) . . . (x̂4 − ŷ4)�j(x̂5, ŷ5), (11)

where �j(x̂5, ŷ5) is linear in x̂5 and ŷ5.
Now let x̂i = ŷi = 1/4 for i = 1, . . . , 4. The label of the internal vertices vj for j = 5, 6 must agree with

the labels of neighboring leaves and hence

Φj = µj(0202) − µj(0022). (12)

Now plugging j = 1 into (11) and (12), for this setting of x̂i, ŷi, we have

Φ1 = 0 (13)

By plugging j = 2, 3 into (11) and (12) we have

Φ2 = −Φ3 = (x̂1 − ŷ1)(x̂2 − ŷ2)(x̂3 − ŷ3)(x̂4 − ŷ4)(1 − 4ŷ5). (14)

Note that x̂i − ŷi < 0 and ŷi < 1/4 and hence (14) is always positive. Linearity of the test µ �→ tT µ implies
that tT µ is positive for any mixture generated from T2 and negative for any mixture generated from T3. �

Lemma 16. Any linear test in the K2 model is a multiple of (9).



Proof. Let t = α1t1 + · · · + α5t5 be a linear test. A linear test in the K2 model must work for JC model
as well. Applying symmetries GJC we obtain

t = α1(µ(0011) − µ(0101)) + 2α2(µ(0122) − µ(0121) − µ(0102) + µ(0012))

+α3(µ(0011) − µ(0101)) + α4(µ(0122) + µ(0012) − µ(0121) − µ(0102)).
(15)

Comparing (15) with (8) we obtain

α1 + α3 = −1 and α4 + 2α2 = 1. (16)

Let µ1 arise from T2 with centered weights (x̂2, ŷ2) = (x̂4, ŷ4) = (x̂5, ŷ5) = (1/4, 1/4), (x̂1, ŷ1) =
(1/4, 0), and (x̂3, ŷ3) = (x̂, ŷ). From observation 12, it follows that Φµ1 = 0. The leaf-labelings with non-
zero probability must give the same label to v2 and v4, and the labels of v1 and v2 must either be both in
{0, 1} or both in {2, 3}. The only such leaf-labelings involved in t1, . . . , t5 are 0101, 0121. Thus

tT µ1 = −α1µ1(0101) − α2µ1(0121) = − 1
16

(α1x̂ + α2ŷ) = 0. (17)

Thus, α1 = α2 = 0 and from (16) we get α3 = −1 and α4 = 1.
Let µ2 be generated from T2 with centered weights (x̂4, ŷ4) = (x̂5, ŷ5) = (1/4, 1/4), (x̂1, ŷ2) =

(x̂3, ŷ3) = (0, 0), and (x̂2, ŷ2) = (1/4, 0). In leaf-labelings with non-zero probability the labels of v2 and v4
are either both in {0, 1} or both in {2, 3}. The only such leaf labelings in t3, t4, t5 are 0202,0213,0212, and
0203. Hence

tT µ3 = µ3(0202) − µ3(0212) − µ3(0203) − α5µ3(0213) =
1

256
(3 − 3 − 1 − α5) = 0.

Thus, α5 = −1 and all the αi are determined. Hence, the linear test is unique (up to scalar multiplication). �

6. NON-IDENTIFIABILITY AND LINEAR TESTS IN CFN

In this section, we consider the CFN model. We first prove there is no linear test, and then we present a
non-identifiable mixture distribution. We then show that there is a linear test for the CFN model when the
edge probabilities are restricted to some interval.

6.1. No linear test for CFN

Again, when considering linear tests we look at the model with its transition matrix centered around its
stationary distribution. The CFN model has ΩCFN = {0, 1}, and its semigroup MCFN consists of matrices

MCFN(x̂) =
1
2
E +

(
x̂ −x̂

−x̂ x̂

)
with 0 < x̂ < 1/2.

In the CFN model, note that the roles of 0 and 1 are symmetric, i. e.,

µ
T,

−→
P

(a1, . . . , an) = µ
T,

−→
P

(1 − a1, . . . , 1 − an). (18)

Hence, the group of symmetries of ΩCFN is GCFN = 〈(01)〉 = Z/(2Z). There are 8 orbits of the action of
GCFN on Ω4

CFN (one can choose a representative for each orbit to have the first coordinate 0). The action of
K further reduces the number of orbits to 5. The action of (1 4) swaps two of the orbits and keeps 3 of the
orbits fixed:

0000 , 0110 ,

0111
0100
0010
0001

, 0011 ↔ 0101 .



By Lemma 10, if there exists a linear test for CFN then (a multiple of) t1 = µ(0011) − µ(0101) is a linear
test. Let µ arise from T2 with the edge incident to leaf vi labeled by MCFN(x̂i), for i = 1, . . . , 4, and the
internal edge labeled by MCFN(x̂5). A short calculation yields

µ(0011) − µ(0101) = x̂5(x̂1x̂3 + x̂2x̂4) − x̂1x̂2 + x̂3x̂4

2
. (19)

Note that (19) is negative if x̂5 is much smaller than the other x̂i; and (19) is positive if x̂1, x̂3 are much
smaller than the other x̂i. Thus, t1 is not a linear test and hence there does not exist a linear test in the CFN
model. By Theorem 4, there exists a non-identifiable mixture. The next result gives an explicit family of
non-identifiable mixtures.

6.2. Non-identifiable mixture for CFN

For each edge e, we will give the edge probability 0 < we < 1/2, which is the probability the endpoints
receive different assignments (i.e., it is the off-diagonal entry in the transition matrix. For a 4-leaf tree T ,
we specify a set of transition matrices for the edges by a 5-dimensional vector

−→
P = (w1, w2, w3, w4, w5)

where, for 1 ≤ i ≤ 4, wi is the edge probability for the edge incident to leaf labeled i, and w5 is the edge
probability for the internal edge.

Proposition 17. For 0 < a, b < 1/2 and 0 < p ≤ 1/2, set

−→
P1 =

1
2
1 − (a, b, a, b, c) and

−→
P2 =

1
2
1 − (b, a, b, a, d),

where 1 = (1, 1, 1, 1, 1) and

c = z/p,

d = z/(1 − p), and

z =
ab

2(a2 + b2)
.

Let

µ = pµ
T3,

−→
P1

+ (1 − p)µ
T3,

−→
P2

.

The distribution µ is invariant under π = (14). Hence, µ is also generated by a mixture from Tπ , a leaf-labeled
tree different from T = T3. In particular, the following holds:

µ = pµ
T2,

−→
P1

+ (1 − p)µ
T2,

−→
P2

.

Hence, whenever c and d satisfy 0 < c, d < 1/2 then µ is in fact a distribution and there is non-identifiability.
Note, for every 0 < p ≤ 1/2, there exist a and b which define a non-identifiable mixture distribution.

Proof. Note that π = (1 4) fixes leaf labels 0000, 0010, 0100, 0110 and swaps 0011 with 0101 and 0001
with 0111.
A short calculation yields

µ(0011) − µ(0101) = ab − (a2 + b2)(pc + (1 − p)d), and

µ(0001) − µ(0111) = (a2 − b2)(pc − (1 − p)d).

which are both zero for our choice of c and d. This implies that µ is invariant under the action of (1 4), and
hence non-identifiable. �



6.3. Linear test for CFN with restricted weights

Lemma 18. Let a ∈ (0, 1/2). If the centered edge weight x̂ for the CFN model is restricted to the interval
(a,

√
a − a2) then there is a linear test.

Proof. We will show that (19) is positive if the x̂i are in the interval (a,
√

a − a2). Let b =
√

a − a2).
Note that 0 < a < b < 1/2.

Since (19) is multi-linear, its extrema occur when the x̂i are from the set {a, b} (we call such a setting
of the x̂i extremal). Note that the x̂i are positive and x̂5 occurs only in terms with negative sign. Thus a
minimum occurs for x̂5 = b. The only extremal settings of the x̂i which have x̂1x̂3 + x̂2x̂4 > x̂1x̂2 + x̂3x̂4
are x̂1 = x̂3 = b, x̂2 = x̂4 = a and x̂1 = x̂3 = a, x̂2 = x̂4 = b. For the other extremal settings (19) is
positive, since b < 1/2. For x̂1 = x̂3 = b, x̂2 = x̂4 = a the value of (19) is b(a − (a2 + b2)). �

Remark 19. In contrast to the above lemma, it is known that there is no linear invariant for the CFN
model. This implies that there is also no linear invariant for the restricted CFN model considered above,
since such an invariant would then extend to the general model. This shows that the notion of linear test is
more useful in some settings than linear invariants.

7. NON-IDENTIFIABILITY IN K3

In this section, we prove there exists a non-identifiable mixture distribution in the K3 model. Our result
holds even when the rate matrix is the same for all edges in the tree (the edges differ only by their associated
time), i.e., the common rate matrix framework. Morevoer, we will show that for most rate matrices R in the
K3 model there exists a non-identifiable mixture in which all transition matrices are generated from R.

The Kimura’s three-parameter model (K3) has ΩK2 = {0, 1, 2, 3} and its semigroup MK3 consists of
matrices of the following form (which we have centered around their stationary distribution):

MK3(x̂, ŷ, ẑ) =
1
4
E +


x̂ + ŷ + ẑ −x̂ −ŷ −ẑ

−x̂ x̂ + ŷ + ẑ −ẑ −ŷ
−ŷ −ẑ x̂ + ŷ + ẑ −x̂
−ẑ −ŷ −x̂ x̂ + ŷ + ẑ

 ,

with x̂ ≤ ŷ ≤ ẑ < 1/4, x̂ + ŷ > 0, and (x̂ + ŷ) > 2(x̂ + ẑ)(ŷ + ẑ). Note that MK3(x̂, ŷ, ŷ) = MK2(x̂, ŷ),
i. e., the K2 model is a special case of the K3 model.

The group of symmetries is GK3 = 〈(01)(23), (02)(13)〉 (which is again the Klein group). There are 64
orbits in Ω4 under the action of GK3 (each orbit has a representative in which 0 appears first). The action of
K further decreases the number of orbits to 28. The following orbits are fixed by (1 4):

0000 , 0110 , 0220 , 0330 ,

0331
0320
0230
0221

,

0332
0310
0130
0112

,

0223
0210
0120
0113

,

0111
0100
0010
0001

,

0222
0200
0020
0002

,

0333
0300
0030
0003

The following orbits switch as indicated under the action of (1 4):

0322
0311
0021
0012

↔
0232
0201
0131
0102

,

0233
0211
0031
0013

↔
0323
0301
0121
0103

,

0133
0122
0032
0023

↔
0313
0302
0212
0203

and 0011 ↔ 0101, 0022 ↔ 0202, 0033 ↔ 0303, 0123 ↔ 0213, 0132 ↔ 0312, 0231 ↔ 0321.

7.1. No linear test for K3

By Lemma 10, any test is a linear combination of

t1 = µ(0011) − µ(0101),



t2 = µ(0322) + µ(0311) − µ(0232) − µ(0201) −
µ(0131) − µ(0102) + µ(0021) + µ(0012),

t3 = µ(0233) + µ(0211) − µ(0323) − µ(0301)

+µ(0031) + µ(0013) − µ(0121) − µ(0103),

t4 = µ(0022) − µ(0202),

t5 = µ(0133) + µ(0122) + µ(0032) + µ(0023)

−µ(0313) − µ(0302) − µ(0212) − µ(0203),

t6 = µ(0033) − µ(0303),

t7 = µ(0123) − µ(0213),

t8 = µ(0132) − µ(0312),

t9 = µ(0231) − µ(0321).

We first present a non-constructive proof of non-identifiability by proving that there does not exist a linear
test, and then Theorem 4, implies there exists a non-identifiable mixture. We then prove the stronger result
where the rate matrix is fixed.

Lemma 20. There does not exist a linear test for the K3 model.

Corollary 21. There exists a non-identifiable mixture in the K3 model.

Proof of Lemma 20. Suppose that t = α1t1 + · · · + α9t9 is a test. Let ŵi = (x̂i, ŷi, ẑi), 1 ≤ i ≤ 5.
For 1 ≤ i ≤ 4, ŵi denotes the centered parameters for the edge incident to leaf i, and ŵ5 are the centered
parameters for the internal edge.

In the definitions of µ1 and µ2 below, we will set ŵ2 = ŵ4 = ŵ5 = (0, 0, 0). This ensures that in labelings
with non-zero probability, leaves v2, v4 and both internal vertices all have the same label. Moreover, by
observation 12, Φ(µi) = 0.

Let µ1 be generated from T2 with ŵ1 = (1/4, ŷ1, ẑ1), and ŵ3 = (1/4, 0, 0). In labelings with non-zero
probability, the labels of v2 and v3 have to both be in {0, 1} or both in {2, 3}. The only labels in t1, . . . , t9
with this property are 0101, 0232, 0323. Thus,

tT µ1 = −α1µ(0101) − α2µ1(0232) − α3µ1(0323) = − 1
16

(α1/4 + α2ŷ1 + α3ẑ1) = 0. (20)

Any ŷ, ẑ ∈ [1/8 − ε, 1/8 + ε] with y′ ≥ z′ gives a valid matrix in the K3 model. For (20) to be always zero
we must have α1 = α2 = α3 = 0 (since 1, ŷ1, ẑ1 are linearly independent polynomials).

Let µ2 be generated from T2 with ŵ1 = (1/4, ŷ1, ẑ1), and ŵ3 = (1/4, ŷ, ẑ). The only labels in t4, . . . , t9
with v2 and v4 having the same label are

0202, 0313, 0212, 0303

(we ignore the labels in t1, t2, t3 because α1 = α2 = α3 = 0). Thus

tT µ1 = −α4µ2(0202) − α5µ2(0313) − α5µ2(0212) − α6µ2(0303)

= −1
4
(α4(ŷ1)2 + 2α5ŷ1ẑ1 + α6(ẑ1)2) = 0.

(21)

Polynomials (ŷ1)2, ŷ1ẑ1, (ẑ1)2 are linearly independent and hence α4 = α5 = α6 = 0.
Thus, t is a linear combination of t7, t8, t9 and hence has at most 6 terms. A test for K3 must be a test for

K2, but the unique test for K2 has 8 terms. Thus, Φ cannot be a test for K3. �



7.2. Non-identifiable mixtures in the K3 model with a fixed rate matrix

We will now consider rate matrices for the model, as opposed to the transition probability matrices. The
rate matrix for the K3 model is

R = R(α, β, γ) =


−α − β − γ α β γ

α −α − β − γ γ β
β γ −α − β − γ α
γ β α −α − β − γ

 , (22)

where the rates usually satisfy α ≥ β ≥ γ > 0. For our examples we will also assume that α, β, γ ∈ [0, 1].
Since the examples are negative they work immediately for the above weaker constraint.

Recall that the K2 model is a submodel of the K3 model: the rate matrices of the K2 model are precisely
the rate matrices of K3 model with β = γ. By Lemma 15, there exists a test in the K2 model and hence there
are no non-identifiable mixtures. We will show that the existence of a test in the K2 model is a rather singular
event: for almost all rate matrices in the K3 model, there exist non-identifiable mixtures and hence no test.

We show the following result.

Lemma 22. Let α, β, γ be chosen independently from the uniform distribution on [0, 1].With probability 1
(over the choice of α, β, γ) there does not exist a test for the K3 model with the rate matrix R(α, β, γ).

To prove Lemma 7.2, we need the following technical concept. A generalized polynomial is a function of
the form

m∑
i=1

ai(u1, . . . , un)ebi(u1,...,un), (23)

where the ai are non-zero polynomials and the bi are distinct linear polynomials. Note that the set of
generalized polynomials is closed under addition, multiplication, and taking derivatives. Thus, for example,
the Wronskian of a set of generalized polynomials (with respect to one of the variables, say u1) is a generalized
polynomial.

For n = 1, we have the following bound on the number of roots of a generalized polynomial (see Pólya
and Szeg}o, 1976, part V, problem 75):

Lemma 23. Let G =
∑m

i=1 ai(u)ebi(u) be a univariate generalized polynomial. Assume m > 0. Then
G has at most

(m − 1) +
m∑

i=1

deg ai(u)

real roots, where deg ai(u) is the degree of the polynomial ai(u).

Corollary 24. Let G(u1, . . . , un) =
∑m

i=1 ai(u1, . . . , un)ebi(u1,...,un) be a generalized polynomial.
Assume m > 0 (i. e., that G is not the zero polynomial). Let r1, . . . , rn be picked in independently and
randomly from uniform distribution on [0, 1]. Then with probability 1 (over the choice of r1, . . . , rn) we have
G(r1, . . . , rn) �= 0.

Proof of Corollary 24. We will proceed by induction on n. The base case n = 1 follows from Lemma 23
since the probability of a finite set is zero.

For the induction step, consider the polynomial a1. Since a1 is a non-zero polynomial there are only
finitely many choices of c ∈ [0, 1] for which a1(c, u2, . . . , un) is the zero polynomial. Thus with probability 1
over the choice of u1 = c we have that a1(c, u2, . . . , un) is a non-zero polynomial. Now, by the induction



hypothesis, with probability 1 over the choice of u2, . . . , un we have that G(c, u2, . . . , un) �= 0. Hence, with
probability 1 over the choice of u1, . . . , un, we have that G(u1, . . . , un) �= 0. �

Proof of Lemma 22. Any test has to be a linear combination of t1, . . . , t9 defined in Section 7. Suppose
that t = σ1t1 + . . . σ9t9 is a test. We will use Observation 12 to show that σ1 = · · · = σ9 = 0 and hence t
cannot be a test. Let σ = (σ1, . . . , σ9).

The transition matrix of the process with rate matrix R, at time s is T (s) = exp(sR). We have
(Felsenstein, 2004)

T (s) = MK3 =
1
4
E +


A + B + C −A −B −C

−A A + B + C −C −B
−B −C A + B + C −A
−C −B −A A + B + C

 , (24)

where

A = (1 + e−2s(α+β) + e−2s(α+γ) − e−2s(β+γ))/4,

B = (1 + e−2s(α+β) − e−2s(α+γ) + e−2s(β+γ))/4,

C = (1 − e−2s(α+β) + e−2s(α+γ) + e−2s(β+γ))/4.

We have changed notation from our earlier definition of MK3 by exchanging A, B, C for x̂, ŷ, ẑ to indicate
these as functions of α, β and γ.

Let µx be generated from T3 with edge weights T (x), T (2x), T (3x), T (4x), T (0). The internal edge has
length 0 (i. e., it is labeled by the identity matrix), and hence, by Observation 12, we must have tT µx = 0 for
all x ≥ 0.

Let fi(x) = tTi µx for i = 1, . . . , 9. Let W (x) be the Wronskian matrix of f1(x), . . . , f9(x) with respect
to x. The entries of W (x) are generalized polynomials in variables α, β, γ, and x. Thus, the Wronskian (i. e.,
det W (x)) is a generalized polynomial in variables α, β, γ, and x.

Now we show that for a particular choice of α, β, γ and x we have det W (x) �= 0. Let α = πi, β = 2πi,
γ = −2πi, and x = 1. Of course complex rates are not valid in the K3 model, we use them only to establish
that W (x) is a non-zero generalized polynomial. Tedious computation (best performed using a computer
algebra system) yields that the Wronskian matrix is the following. The first seven columns are as follows:




8 −16 −16 8 16 8 0
40iπ −240iπ 80iπ 56iπ 80iπ 24iπ 48iπ

−1052π2 3736π2 856π2 −780π2 −824π2 −300π2 112π2

−12244iπ3 52920iπ3 −4520iπ3 −13988iπ3 −2600iπ3 732iπ3 −4224iπ3

206468π4 −923656π4 −134536π4 187188π4 46856π4 9108π4 1520π4

3199060iπ5 −12454200iπ5 −280600iπ5 3574316iπ5 103400iπ5 −354276iπ5 576168iπ5

−46789172π6 230396776π6 25447336π6 −47807340π6 −2740904π6 1992900π6 −2781848π6

−826613044iπ7 3116686680iπ7 184720120iπ7 −908923988iπ7 −4488200iπ7 82589532iπ7 −98067024iπ7

11742908228π8 −58371817096π8 −5047384456π8 12445876068π8 163759496π8 −776675292π8 840993440π8

The last two columns are as follows:

0 0
−48iπ −96iπ

912π2 800π2

14880iπ3 17568iπ3

−212400π4 −198560π4

−3692808iπ5 −4100016iπ5

49984152π6 51191600π6

919913280iπ7 1003352208iπ7

−12613821600π8 −13323533120π8

.




The determinant of W (x) is 33920150890618370745095852723798016000000π36, which is non-zero.
Thus, det W (x) is a non-zero generalized polynomial and hence for random α, β, γ and x we have that
det W (x) is non-zero with probability 1.

Assume now that det W (x) �= 0. Let w = W (x)σ. The first entry w1 of w is given by w1 = tT µx. Since
t is a test we have w1 = 0. The second entry w2 of w is given by w2 = (∂/∂x)tT µx. Again we must have
w2 = 0, since t is a test. Similarly we show w3 = · · · = w9 = 0. Note that W (x) is a regular matrix and
hence σ must be the zero vector. Thus t is not a test. Since det W (x) �= 0 happens with probability 1 we
have that there exists no test with probability 1. �



8. MAXIMUM LIKELIHOOD RESULTS

Here we prove Theorem 2.

8.1. Terminology

In the CFN and JC model there is a single parameter defining the transition matrix for each edge, namely
a parameter xe where 0 < xe < 1/|Ω|. In K2, there are 2 parameters and in K3 there are 3 parameters. We
use the term weights −→w e to denote the setting of the parameters defining the transition matrix for the edge e.
And then we let −→w = (−→w e)e∈T denote the set of vectors defining the transition matrices for edges of tree T .

We use the term zero weight edge to denote the setting of the weights so that the transition matrix is the
identity matrix I . Thus, in the CFN and JC models, this corresponds to setting xe = 0. We refer to a non-zero
weight edge as a setting of the parameters so that all entries of the transition matrix are positive. Hence, in
the CFN and JC models this corresponds to xe > 0.

Note, LT (µ) is maximized over the set of weights −→w . Hence our consideration of weights −→w . There are
typically constraints on −→w in order to define valid transition matrices. For example, in the CFN model we
have −→w e = xe where 0 < xe < 1/2, and similarly 0 < xe < 1/4 in the JC model. In the K2 model we
have −→w e = (x, y) where x ≥ y > 0, x + y < 1/2. Finally, in the K3 model, we have further constraints as
detailed in Section 7.

8.2. Technical tools

Our proof begins starts from the following observation. Consider the CFN model. Note that for x = 0
we have

−→
P1 =

−→
P2

′
and hence µ0 = µT3,−→v where −→v = (1/2, 1/2, 1/2, 1/2, 0) are the weights for the CFN

model, i.e., µ0 is generated by a pure distribution from T3. In fact it can be generated by a pure distribution
from any leaf-labeled tree on 4 leaves since the internal edges have zero length.

Observation 25. Consider a tree T on n leaves and weights w where all internal edges have zero weight.
For all trees S �= T on n leaves, there is a unique weight −→v such that µS,−→v = µT,−→w .

Proof. Let −→v have the same weight as −→w for all terminal edges, and zero weight for all internal edges.
Note, we then have µS,−→v = µT,−→w and it remains to prove uniqueness of −→v .

Let −→u be a set of weights where µS,−→u = µS,−→w . Let S′ be obtained from S by contracting all the edges

of zero weight in −→u , and let
−→
u′ be the resulting set of weights for the remaining edges. The tree S′ has all

internal vertices of degree ≥ 3 and internal edges have non-zero weight.
It follows from the work of Buneman (1971) that S′,

−→
u′ is unique among trees with non-zero internal

edge weights and without vertices of degree two. If −→u = −→v , then S′ is a star, and hence every −→u must
contract to a star. This is only possible if −→u assigns zero weight to all internal edges. Therefore, −→v is the
unique weight. �

For w and w′ defined for the CFN model in Theorem 2, for any 4-leaf tree S, the maximum of LS(µ0) is
achieved on v = (1/4, 1/4, 1/4, 1/4, 0). For any v′ �= v the distribution µS,v′ is different from µ0 and hence
LS,v′(µ0) < LS,v(µ0) = µT

0 lnµ0. Intuitively, for small x the maximum of LS(µx) should be realized on
a v′′ which is near v. Now we formalize this argument in the following lemma. Then in Lemma 28 we will
use the Hessian and Jacobian of the expected log-likelihood functions to bound LS(µx) in terms of LS(µ0).

Lemma 26. Let µ be a probability distribution on Ωn such that every element has non-zero probability.
Let S be a leaf-labeled binary tree on n leaves. Suppose that there exists a unique v in the closure of the
model such that µS,v = µ. Then for every δ > 0 there exists ε > 0 such that for any µ′ with ||µ′ − µ|| ≤ ε
the global optima of LS(µ′) are attained on v′ for which ||v′ − v|| ≤ δ.

Remark 27. In our application of the above lemma we have µ = µ0. Consider a tree S and its unique
weight v where µS,v = µ0. Note, the requirement that every element in {0, 1}n has non-zero probability, is



satisfied if the terminal edges have non-zero weights. In contrast, the internal edges have zero weight so that
Observation 25 applies, and in some sense the tree is achievable on every topology.

Proof. We will prove the lemma by contradiction. Roughly speaking, we now suppose that there exists
µ′ close to µ where the maximum of µ′ is achieved far from the maximum of µ. Formally, suppose that there
exists δ > 0 and sequences µ′

i and v′
i such that limi→∞ ||µ−µ′

i|| = 0 and ||v′
i − v|| > δ where v′

i is a weight
for which the optimum of LS(µ′

i) is attained. By the optimality of the v′
i we have

LS,v′
i
(µ′

i) ≥ LS,v(µ′
i). (25)

We assumed µS,v = µ and hence the entries of lnµS,v are finite since we assumed µ has positive entries.
Thus

lim
i→∞

LS,v(µ′
i) = lim

i→∞
(µ′T

i lnµS,v) = µT lnµS,v = LS,v(µ). (26)

Take a subsequence of the v′
i which converges to some v′. Note, v′ is in the closure of the model.

Let ε be the smallest entry of µ. For all sufficiently large i, µ′
i has all entries ≥ ε/2.

Hence,

LS,v′
i
(µ′

i) =
∑

z∈Ωn

µ′
i(z) ln(µS,v′

i
(z)) ≤ ε

2
min
z∈Ωn

ln(µS,v′
i
(z)) (27)

Because of (26), for all sufficiently large i, LS,v(µ′
i) ≥ 2LS,v(µ) (recall that the log-likelihoods are

negative). Combining with (27), we have that the entries of lnµS,v′
i

are bounded from below by LS,v(µ)/4ε.
Thus, both µ′

i and lnµS,v′
i

are bounded. For bounded and convergent sequences,

lim
n→∞

anbn = lim
n→∞

an lim
n→∞

bn

Therefore,

lim
i→∞

LS,v′
i
(µ′

i) = ( lim
i→∞

µ′T
i )( lim

i→∞
lnµS,v′

i
) = µT lnµS,v′ = LS,v′(µ). (28)

From (25), (26), and (28), we have LS,v′(µ) ≥ LS,v(µ). Since v′ �= v we get a contradiction with the
uniqueness of v. �

We now bound the difference of LS(µ′) and LS(µ) when the previous lemma applies. This will then imply
that for x sufficiently small, LS(µx) is close to LS(µ0).

Here is the formal statement of the lemma.

Lemma 28. Let µ ∈ R
|Ω|n be a probability distribution on Ωn such that every element has non-zero

probability. Let S be a leaf-labeled binary tree on n vertices. Suppose that there exists −→v in the closure of the
model such that µS,−→v = µ and that −→v is the unique such weight. Let ∆µx ∈ R

|Ω|n be such that ∆µT
x 1 = 0,

and x �→ µx is continuous around 0 in the following sense: ∆µx → ∆µ0 as x → 0.
Let g(−→w ) = LS,−→w (µ), and hx(−→w ) = (∆µx)T lnµS,−→w . Let H be the Hessian of g at −→v and Jx be the

Jacobian of hx at −→v . Assume that H has full rank. Then

LS(µ + x∆µx) ≤ µT lnµ + xhx(−→v ) − x2

2
J0H

−1JT
0 + o(x2). (29)

Moreover, if (H−1JT )i ≤ 0 for all i such that −→v i = 0 then the inequality in (29) can be replaced by equality.

Remark 29. When (H−1JT )i < 0 for all i such that vi = 0 then the likelihood is maximized at non-
trivial branch lengths. In particular, for the CFN model, the branch lengths are in the interval (0, 1/2), that
is, there are no branches of length 0 or 1/2. Similarly for the Jukes-Cantor model the lengths are in (0, 1/4).



Proof. For notational convenience, let f(−→w ) = lnµS,−→w . Thus, g(−→w ) = µT f(−→w ). Note that

f(−→v ) = lnµ. (30)

The function f maps assignments of weights for the 2n − 3 edges of S to the logarithm of the distribution
induced on the leaves. Hence, the domain of f is the closure of the model, which is a subspace of R

d(2n−3),
where d is the dimension of the parameterization of the model, e.g., in the CFN and JC models d = 1 and in
the K2 model d = 2. We denote the closure of the model as Λ. Note that the range of f is [−∞, 0]|Ω|n .

Let Jf = (∂fi/∂wj) be the Jacobian of f and Hf = (∂fi/∂wj∂wk) be the Hessian of f (Hf is a rank 3
tensor).

If −→v is in the interior of Λ, then since −→w optimizes LS,−→v (µ) we have

µT Jf (−→v ) = 0. (31)

We will now argue that equality (31) remains true even when −→v is on the boundary of Λ. Function µS,−→v is
a polynomial function of the coordinates of −→v . The coordinates of µS,−→v sum to the constant 1 function. We
assumed that µ = µS,−→v is strictly positive and hence for all −→w in a small neighborhood of −→v we have that
µS,−→w is still a distribution (note that −→w can be outside of Λ). Suppose that µT Jf (−→v ) �= 0. Then there exists−→
∆v such that µT lnµ

S,−→v +
−→
∆v

> µT lnµS,−→v = µT lnµ. This contradicts the fact that the maximum (over all
distributions ν) of µT ln(ν) is achieved at ν = µ. Thus, (31) holds.
If we perturb µ by x∆µx and −→v by

−→
∆v the likelihood changes as follows:

L
T,−→v +

−→
∆v

(µ + x∆µx)

= (µ + x∆µx)T f(v + ∆v)

= (µ + x∆µx)T
(
f(−→v ) + (Jf (−→v )) (

−→
∆v) +

1
2
(
−→
∆v)T (Hf (−→v )) (

−→
∆v) + O(||−→∆v||3)

)
= µT lnµ + µT

(
(Jf (−→v )) (

−→
∆v) +

1
2
(
−→
∆v)T Hf (−→v )(

−→
∆v)

)
+x(∆µx)T

(
f(−→v ) + Jf (−→v )(

−→
∆v)

)
+ O

(
||−→∆v||3 + x||−→∆v||2

)
= µT lnµ + µT

(1
2
(∆v)T Hf (−→v )(

−→
∆v)

)
+ x(∆µx)T

(
f(−→v ) + Jf (−→v )(

−→
∆v)

)
+O

(
||−→∆v||3 + x||−→∆v||2

)
, (32)

where in the third step we used (30) and in the last step we used (31). In terms of H, J defined in the statement
of the theorem, we have

L
T,−→v +

−→
∆v

(µ + x∆µx) = µT lnµ + xhx(−→v ) +
1
2
(
−→
∆v)T H(

−→
∆v) + xJx(

−→
∆v)

+ O
(
||−→∆v||3 + x||−→∆v||2

)
. (33)

We will now prove that H is negative definite. First note that we assumed that H is full-rank, thus all of
its eigenvalues are non-zero. Moreover, g(−→w ) = LS,−→w (µ) is maximized for −→w = −→v . Plugging x = 0 into
(33), we obtain

g(−→v +
−→
∆v) = µT lnµ +

1
2
(
−→
∆v)T H(

−→
∆v) + O

(
||−→∆v||3

)
(34)

Hence, if H was not negative definite, then it would have at least one positive eigenvalue. Let −→z denote the
corresponding eigenvector. Let

−→
∆v be a sufficiently small multiple of −→z . By (34) we have g(−→v +

−→
∆v) > g(−→v )

which contradicts the earlier claim that −→w = −→v maximizes g(−→w ). Hence, all of the eigenvalues of H are



negative, i.e., it is negative definite. Let λmax be the largest eigenvalue of H , i.e., closest to zero. We will use
that λmax < 0. Note,

(
−→
∆v)T H(

−→
∆v) ≤ λmax||−→∆v||2 (35)

Set
−→
∆v so that L−→v +

−→
∆v

(µ + x
−→
∆µx) is maximized. (

−→
∆v is a function of x.) Now we will prove that ||−→∆v|| =

O(x). For any δ > 0, by Lemma 26, for all sufficiently small x, we have ||−→∆v|| ≤ δ. By (33) and (35), we
have

L
S,−→v +

−→
∆v

(µ + x∆µx) ≤ µT lnµ + xhx(−→v ) + λmax||−→∆v||2 + xJx(
−→
∆v) + O(||−→∆v||3 + x||−→∆v||2).

Assume x = o(||−→∆v||) (i.e., assume that ||−→∆v|| goes to zero more slowly than x). Then, we have

L
S,−→v +

−→
∆v

(µ + x∆µ) ≤ µT lnµ + xhx(−→v ) + λmax||−→∆v||2 + o(||−→∆v||2).

On the other hand, we have

LS,−→v (µ + x∆µ) = (µ + x∆µ)T lnµS,−→v = µT lnµ + xhx(−→v ).

Since λmax||−→∆v||2 is negative then for sufficiently small ||−→∆v|| (recall we can choose any δ > 0 where
||−→∆v|| ≤ δ), we have

L−→v +
−→
∆v

(µ + x∆µ) ≤ L−→v (µ + x∆µ).

Thus, we may restrict ourselves to
−→
∆v such that ||−→∆v|| = O(x). Hence

LS(µ + x∆µx) ≤ µT lnµ + xhx(−→v ) + max−−→
∆w

(
1
2
(
−−→
∆w)T H(

−−→
∆w) + xJx(

−−→
∆w)

)
+ O(x3). (36)

The maximum of

1
2
(
−−→
∆w)T H(

−−→
∆w) + xJx(

−−→
∆w) (37)

occurs at
−→
∆z := −xH−1JT

x ; for this
−→
∆z the value of (37) is −x2

2 JxH−1JT
x . Therefore,

LS(µ + x∆µ) ≤ µT lnµ + xhx(−→v ) − x2

2
JxH−1JT

x + O(x3).

From µx → µ0, we have JxH−1JT
x = (1 + o(1))J0H

−1JT
0 , and hence

LS(µ + x∆µ) ≤ µT lnµ + xhx(−→v ) − x2

2
J0H

−1JT
0 + o(x2).

This completes the proof of the first part of the lemma. It remains to prove the case when the inequality can
be replaced by equality.

Note that in general the inequality cannot be replaced by equality, since −→v +x
−→
∆z can be an invalid weight

(i.e., outside of Λ) for all x. If (
−→
∆v)i ≥ 0 whenever −→v i = 0 then −→v + x

−→
∆z is a valid weight vector for

sufficiently small x and hence plugging directly into (33) we have

LS(µ + x∆µx) ≥ µT lnµ + xhx(−→v ) − x2

2
JxH−1JT

x + O(x3) =

µT lnµ + xhx(−→v ) − x2

2
J0H

−1JT
0 + o(x2).

(38)

�



8.3. Proof of theorem 2 in CFN: C = 1/4

In this section, we deal with the CFN model. We prove Part 1 of Theorem 2. For simplicity, we first present
the proof for the case C = 1/4.

Let µ1 be generated from T3 with weights
−→
P1 = (1/4+x, 1/4−x, 1/4−x, 1/4+x, x2) and µ2 be generated

from T3 with weights
−→
P2 = (1/4−x, 1/4+x, 1/4+x, 1/4−x, x2). Let µ = (µ1+µ2)/2. Note that (1 4)(2 3)

fixes µ1, and µ2; and (1 2)(3 4) swaps µ1 and µ2. Hence µ is invariant under K = 〈(1 2)(3 4), (1 4)(2 3)〉.
This simplifies many of the following calculations.

One can verify that the Hessian is the same for all the trees:

H =



−1552
615

−16
41

−16
41

−16
41

−80
123

−16
41

−1552
615

−16
41

−16
41

−80
123

−16
41

−16
41

−1552
615

−16
41

−80
123

−16
41

−16
41

−16
41

−1552
615

−80
123

−80
123

−80
123

−80
123

−80
123

−400
369

 .

The above is straightforward to verify in any symbolic algebra system, such as Maple.
The Jacobians differ only in their last coordinate. For T3 we have

J0 =
(

1744
615

,
1744
615

,
1744
615

,
1744
615

,
−880
369

)
,

Finally,

−1
2
J0H

−1JT
0 =

36328
1845

≈ 19.68997.

Hence, for v = (1/4, 1/4, 1/4, 1/4, 0), by Lemma 28, we have

LS(µx) ≤ µT lnµ + xh(v) − x2

2
J0H

−1JT
0 + O(x3)

= µT lnµ + xh(v) + x2 36328
1845

+ O(x3)

For T2 we have

J =
(

1744
615

,
1744
615

,
1744
615

,
1744
615

,
−1208
369

)
,

Then,

−1
2
J0H

−1JT
0 =

244862
9225

≈ 26.54331.

By Lemma 28, we have

LS(µx) ≤ µT lnµ + xh(v) + x2 244862
9225

+ O(x3)

For T1 we have

J0 =
(

1744
615

,
1744
615

,
1744
615

,
1744
615

,
4040
369

)
,

−H−1J0 =
(−7

4
,
−7
4

,
−7
4

,
−7
4

,
143
10

)
. (39)



−1
2
J0H

−1JT
0 =

126118
1845

≈ 68.35664.

Note that the last coordinate of −H−1J0 (in (39)) is positive and hence we have equality in Lemma 28. Thus,

LS(µx) = µT lnµ + xh(v) + x2 126118
1845

+ O(x3)

The largest increase in likelihood is attained on T1. Thus T1 is the tree with highest likelihood for sufficiently
small x.

8.4. Proof of theorem 2 in CFN: arbitrary C

The Hessian is the same for all four-leaf trees. In this case, we state the inverse of the Hessian which is
simpler to state than the Hessian itself. We have

H−1 =



16C4−1
32C2 0 0 0 (4C2−1)2

128C3

0 16C4−1
32C2 0 0 (4C2−1)2

128C3

0 0 16C4−1
32C2 0 (4C2−1)2

128C3

0 0 0 16C4−1
32C2

(4C2−1)2

128C3

(4C2−1)2

128C3
(4C2−1)2

128C3
(4C2−1)2

128C3
(4C2−1)2

128C3
(16C4−24C2−3)(4C2−1)2

256C4(1+4C2)2


The first four coordinates of the Jacobians are equal and have the same value for all trees:

16C(64C6 − 16C4 + 12C2 + 1)
(16C4 − 1)(16C4 + 24C2 + 1)

.

Thus, for each tree, we will only list the last coordinate of the Jacobian J0 which we denote as J0[5].
Let

β = (4C2 − 1)2(16C4 + 24C2 + 1),

γ = β · (1 + 4C2)2

16

Note that β > 0 and γ > 0 for C ∈ (0, 1/2).
For T1 we have

J0[5] =
1
β

· 128C2(16C6 − 24C4 + 17C2 + 1),

∆1 :=
1
2
J0H

−1J0 =
1
γ

· (−512C12 − 2048C10 + 3520C8 − 1856C6 + 390C4 + 88C2 + 3),

and the last coordinate of −H−1J0 is

L :=
48C6 − 40C4 + 15C2 + 2

2C2(1 + 4C2)2
.

It is easily checked that L is positive for C ∈ (0, 1/2) and hence we have equality in Lemma 28.
For T2 we have

J0[5] =
1
β

· 128C4(16C4 − 40C2 − 7),



∆2 :=
1
2
J0H

−1J0 =
1
γ

· (−512C12 − 5120C10 + 960C8 + 832C6 + 198C4 + 28C2 + 1).

For T3 we have

J0[5] =
1
β

· 256C4(16C4 − 8C2 − 3),

∆3 :=
1
2
J0H

−1J0 =
1
γ

· (2048C12 − 2048C10 − 512C8 + 72C4 + 24C2 + 1).

It remains to show that ∆1 > ∆2 and ∆1 > ∆3. We know that for C = 1/4 the inequalities hold. Thus
we only need to check that ∆1 − ∆2 and ∆1 − ∆3 do not have roots for C ∈ (0, 1/2). This is easily done
using Sturm sequences, which is a standard approach for counting the number of roots of a polynomial in an
interval.

8.5. Proof of theorem 2 in JC, K2, and K3

Our technique requires little additional work to extend the result to JC, K2, and K3 models. Let
JC-likelihood of tree T on distribution µ be the maximal likelihood of µT,w over all labelings of w, in the JC
model. Similarly we define K2-likelihood and K3-likelihood. Note that K3-likelihood of a tree is greater or
equal to its K2-likelihood which is greater or equal to its JC-likelihood. In the following we will consider a
mixture distribution generated from the JC model, and look at the likelihood (under a non-mixture) for JC,
K2, and K3 models.

For the K3 model, the transition matrices are of the form

PK3(α, β, γ) =


1 − α − β − γ α β γ

α 1 − α − β − γ γ β
β γ 1 − α − β − γ α
γ β α 1 − α − β − γ

 ,

with α ≥ β ≥ γ > 0, α+β < 1/2, and γ > (α+γ)(β +γ). The K2 model is the case β = γ, the JC model
is the case α = β = γ.

Theorem 30. Let
−→
P1 = (1/8 + x, 1/8 − x, 1/8 − x, 1/8 + x, x2) and

−→
P2 = (1/8 − x, 1/8 + x, 1/8 +

x, 1/8 − x, x2). Let µx denote the following mixture distribution on T3 generated from the JC model:

µx =
(
µ

T3,
−→
P1

+ µ
T3,

−→
P2

)
/2.

There exists x0 > 0 such that for all x ∈ (0, x0) the JC-likelihood of T1 on µx is higher than the K3-likelihood
of T2 and T3 on µx.

Note that Part 2 of Theorem 2 for the JC, K2, and K3 models is immediately implied by Theorem 30.
First we argue that in the JC model T1 is the most likely tree. As in the case for the CFN model, because

of symmetry, we have the same Hessian for all trees.

H =



−2373504
112255

−915872
336765

−915872
336765

−915872
336765

−587856
112255

−915872
336765

−2373504
112255

−915872
336765

−915872
336765

−587856
112255

−915872
336765

−915872
336765

−2373504
112255

−915872
336765

−587856
112255

−915872
336765

−915872
336765

−915872
336765

−2373504
112255

−587856
112255

−587856
112255

−587856
112255

−587856
112255

−587856
112255

−1130124
112255

 ,

Again the Jacobians differ only in the last coordinate.



For T3:

J0 =
(

4199248
112255

,
4199248
112255

,
4199248
112255

,
4199248
112255

,
−7085428
112255

)
, (40)

Then,

−1
2
J0H

−1JT
0 =

174062924259638
237159005655

≈ 733.9503.

For T2:

J0 =
(

4199248
112255

,
4199248
112255

,
4199248
112255

,
4199248
112255

,
−8069818
112255

)
, (41)

Then,

−1
2
J0H

−1JT
0 =

410113105846051
474318011310

≈ 864.6374.

For T1:

J0 =
(

4199248
112255

,
4199248
112255

,
4199248
112255

,
4199248
112255

,
22878022
112255

)
, (42)

−H−1J0 =
(−10499073

2816908
,
−10499073
2816908

,
−10499073
2816908

,
−10499073
2816908

,
118305233
4225362

)
. (43)

Note, again the last coordinate is positive as required for the application of Lemma 28. Finally,

−1
2
J0H

−1JT
0 =

1221030227753251
474318011310

≈ 2574.286. (44)

Now we bound the K3-likelihood of T2 and T3. The Hessian matrix is now 15 × 15. It is the same for all
the 4-leaf trees and has a lot of symmetry. There are only 8 different entries in H . For distinct i, j ∈ [4] we
have

∂2

∂pi∂pi
f(µ0) = −538996/112255,

∂2

∂pi∂pj
f(µ0) = −605684/1010295,

∂2

∂pi∂p5
f(µ0) = −132304/112255,

∂2

∂pi∂ri
f(µ0) = −126086/112255,

∂2

∂pi∂rj
f(µ0) = −51698/336765,

∂2

∂pi∂r5
f(µ0) = −2448/8635,

∂2

∂ri∂ri
f(µ0) = −268544/112255,

∂2

∂ri∂r5
f(µ0) = −54082/112255.



For T3, its Jacobian J0 is a vector of 15 coordinates. It turns out that 3J0 is the concatenation of 3 copies of
the Jacobian for the JC model which is stated in (40). Finally, we obtain

−1
2
J0H

−1JT
0 =

174062924259638
237159005655

≈ 733.9503. (45)

For T2 we again obtain that for its Jacobian J0, 3J0 is the concatenation of 3 copies of (41). Then,

−1
2
J0H

−1JT
0 =

410113105846051
474318011310

≈ 864.6374. (46)

Finally, for T1, for its Jacobian J0, 3J0 is the concatenation of 3 copies of (42) and −H−1J0 is the
concatenation of 3 copies of (43). Then,

−1
2
J0H

−1JT
0 =

1221030227753251
474318011310

≈ 2574.286.

Note the quantities − 1
2J0H

−1JT
0 are the same in the K3 model are the same as the corresponding quantities

in the JC model. It appears that even though the optimization is over the K3 parameters, the optimum
assignment is a valid setting for the JC model.

Observe that − 1
2J0H

−1JT
0 for T1 in the JC model (see (44)) is larger than for T2 and T3 in the K3 model

(see (46) and (45)). Applying Lemma 28, this completes the proof of Theorem 30.

9. MCMC RESULTS

The following section has a distinct perspective from the earlier sections. Here we are generating N samples
from the distribution and looking at the complexity of reconstructing the phylogeny. The earlier sections
analyzed properties of the generating distribution, as opposed to samples from the distribution. In addition,
instead of finding the maximum likelihood tree, we are looking at sampling from the posterior distribution
over trees. To do this, we consider a Markov chain whose stationary distribution is the posterior distribution,
and analyze the chain’s mixing time.

For a set of data
−→
D = (D1, . . . , DN ) where Di ∈ {0, 1}n, its likelihood on tree T with transition matrices−→

P is

µ
T,

−→
P

(
−→
D) = Pr

(−→
D | T,

−→
P
)

=
∏

i

Pr
(−→

D i | T,
−→
P
)

=
∏

i

µ
T,

−→
P

(
−→
D i)

= exp(
∑

i

ln(µ
T,

−→
P

(
−→
D i))

Let Φ(T,
−→
P ) denote a prior density on the space of trees where∑

T

∫
−→
P

Φ(T,
−→
P )d

−→
P = 1.

Our results extend to priors that are lower bounded by some ε as in Mossel and Vigoda (2006). In particular,
for all T,

−→
P , we require Φ(T,

−→
P ) ≥ ε. We refer to these priors as ε-regular priors.

Applying Bayes law we get the posterior distribution:

Pr
(
T,

−→
P | −→

D
)

=
Pr
(−→

D | T,
−→
P
)
Φ(T,

−→
P )

Pr
(−→

D
)



=
Pr
(−→

D | T,
−→
P
)
Φ(T,

−→
P )∑

T ′
∫

−→
P

′ Pr
(−→

D | T ′,
−→
P

′)
Φ(T ′,

−→
P

′
)d

−→
P

′

Note that for uniform priors the posterior probability of a tree given
−→
D is proportional to Pr

(−→
D | T

)
.

Each tree T then has a posterior weight

w(T ) =
∫

−→
P

Pr
(−→

D | T,
−→
P
)
Φ(T,

−→
P )d

−→
P .

We look at Markov chains on the space of trees where the stationary distribution of a tree is its posterior
probability. We consider Markov chains using nearest-neighbor interchanges (NNI). The transitions modify
the topology in the following manner (Fig. 3).

Let St denote the tree at time t. The transition St → St+1 of the Markov chain is defined as follows.
Choose a random internal edge e = (u, v) in S. Internal vertices have degree three, thus let a, b denote
the other neighbors of u and y, z denote the other neighbors of v. There are three possible assignments for
these 4 subtrees to the edge e (namely, we need to define a pairing between a, b, y, z). Choose one of these
assignments at random, denote the new tree as S′. We then set St+1 = S′ with probability

min{1, w(S′)/w(St)}.} (47)

With the remaining probability, we set St+1 = St.
The acceptance probability in (47) is known as the Metropolis filter and implies that the unique stationary

distribution π of the Markov chain statisfies, for all trees T :

π(T ) =
w(T )∑
T ′ w(T ′)

.

We refer readers to Felsenstein (2004) and Mossel and Vigoda (2006) for a more detailed introduction to
this Markov chain. We are interested in the mixing time Tmix, defined as the number of steps until the chain
is within variation distance ≤ 1/4 of the stationary distribution. The constant 1/4 is somewhat arbitrary, and
can be reduced to any δ with Tmix log(1/δ) steps.

For the MCMC result, we consider trees on 5 taxa. Thus trees in this section will have leaves numbered
1, 2, 3, 4, 5 and internal vertices numbered 6, 7, 8. Let S3 denote the tree (((12), 5), (34)). Thus, S3 has edges
e1 = {1, 6}, e2 = {2, 6}, e3 = {3, 8}, e4 = {4, 8}, e5 = {5, 7}, e6 = {6, 7}, e7 = {7, 8}. We will list

FIG . 3. Illustration of NNI transitions where the subtrees adjacent to internal edge e are re-arranged.



the transition probabilities for the edges of S3 in this order. For the CFN model, we consider the following
vector of transition probabilities. Let

−→
P1 = (1/4 + x, 1/4 − x, 1/4 − x, 1/4 + x, 1/4, c, c), and
−→
P2 = (1/4 − x, 1/4 + x, 1/4 + x, 1/4 − x, 1/4, c, c),

where

c =
1
2

(
1 −

√
1 − 16x2

1 + 16x2

)
.

For the JC model, let
−→
P1 = (1/8 + x, 1/8 − x, 1/8 − x, 1/8 + x, 1/8, c′, c′), and
−→
P2 = (1/8 − x, 1/8 + x, 1/8 + x, 1/8 − x, 1/8, c′, c′),

where

c′ = 16x2.

Let µ1 = µ
S1,

−→
P1

and µ2 = µ
S1,

−→
P2

. We are interested in the mixture distribution:

µ =
1
2

(µ1 + µ2)

Let S2 denote the tree (((14), 5), (23)).
The key lemma for our Markov chain result states that under µ, the likelihood has local maximum, with

respect to NNI connectivity, on S1 and S2.

Lemma 31. For the CFN and JC models, there exists x0 > 0 such that for all x ∈ (0, x0) then for all
trees S that are one NNI transition from S1 or S2, we have

LS(µ) < LS1(µ), LS(µ) < LS2(µ)

This then implies the following corollary.

Theorem 32. There exists a constant C > 0 such that for all ε > 0 the following holds. Consider a data
set with N characters, i.e.,

−→
D = (D1, . . . , DN ), chosen independently from the distribution µ. Consider

the Markov chains on tree topologies defined by nearest-neighbor interchanges (NNI). Then with probability
1−exp(−CN) over the data generated, the mixing time of the Markov chains, with priors which are ε-regular,
satisfies

Tmix ≥ ε exp(CN).

The novel aspect of this section is Lemma 31. The proof of Theorem 32 using Lemma 31 is straightforward.

Proof of Lemma 31. The proof follows the same lines as the proof of Theorems 2 and 30. Thus our main
task is to compute the Hessian and Jacobians, for which we utilize Maple.

We begin with the CFN model.
The Hessian is the same for all 15 trees on 5-leaves:

H =



−3880
1281

−114
427

−114
427

−114
427

−114
427

−1241
1281

−190
427

−114
427

−3880
1281

−114
427

−114
427

−114
427

−1241
1281

−190
427

−114
427

−114
427

−3880
1281

−114
427

−114
427

−190
427

−1241
1281

−114
427

−114
427

−114
427

−3880
1281

−114
427

−190
427

−1241
1281

−114
427

−114
427

−114
427

−114
427

−3880
1281

−190
427

−190
427

−1241
1281

−1241
1281

−190
427

−190
427

−190
427

−6205
3843

−950
1281

−190
427

−190
427

−1241
1281

−1241
1281

−190
427

−950
1281

−6205
3843


,



We begin with the two trees of interest:

3
�

�
�

�

5 4

2 1

and
2
�

�
�

�

5 4

1 3

Their Jacobian is

J0 =
(

17056
1281

,
17056
1281

,
17056
1281

,
17056
1281

,
2432
427

,
57952
3843

,
57952
3843

)
,

Thus,

−H−1J0 = (2, 2, 2, 2, 0, 4, 4) .

Note the last two coordinates are positive, hence we get equality in the conclusion of Lemma 28. Finally,

−1
2
J0H

−1JT
0 =

436480
3843

≈ 113.5779.

We now consider those trees connected to S1 and S2 by one NNI transition. Since there are 2 internal edges
each tree has 4 NNI neighbors.

The neighbors of S1 are

4
�

�
�

�

2 5

3 1

4
�

�
�

�

1 5

3 2

2
�

�
�

�

3 5

1 4

2
�

�
�

�

4 5

1 3

The neighbors of S2 are

3
�

�
�

�

1 5

2 4

3
�

�
�

�

4 5

2 1

4
�

�
�

�

2 5

1 3

4
�

�
�

�

3 5

1 2

The Jacobian for all 8 of these trees is

J0 =
(

17056
1281

,
17056
1281

,
17056
1281

,
2432
427

,
17056
1281

,
57952
3843

,
3728
427

)
,

Finally,

−1
2
J0H

−1JT
0 =

2242633984
20840589

≈ 107.6090,

Note the quantities − 1
2J0H

−1JT
0 are larger for the two trees S1 and S2. This completes the proof for the

CFN model.
We now consider the JC model. Again the Hessian is the same for all the trees:

H =



−512325018
20541185

−36668964
20541185

−36668964
20541185

−36668964
20541185

−36668964
20541185

−328636353
41082370

−28145979
8216474

−36668964
20541185

−512325018
20541185

−36668964
20541185

−36668964
20541185

−36668964
20541185

−328636353
41082370

−28145979
8216474

−36668964
20541185

−36668964
20541185

−512325018
20541185

−36668964
20541185

−36668964
20541185

−28145979
8216474

−328636353
41082370

−36668964
20541185

−36668964
20541185

−36668964
20541185

−512325018
20541185

−36668964
20541185

−28145979
8216474

−328636353
41082370

−36668964
20541185

−36668964
20541185

−36668964
20541185

−36668964
20541185

−512325018
20541185

−28145979
8216474

−28145979
8216474

−328636353
41082370

−328636353
41082370

−28145979
8216474

−28145979
8216474

−28145979
8216474

−1273864167
82164740

−134747901
20541185

−28145979
8216474

−28145979
8216474

−328636353
41082370

−328636353
41082370

−28145979
8216474

−134747901
20541185

−1273864167
82164740





Beginning with tree S1

2
�

�
�

�

5 4

1 3

We have:

J0 =
(

4342624176
20541185

,
4342624176
20541185

,
4342624176
20541185

,
4342624176
20541185

,
1733695536
20541185

,
5655197244
20541185

,
5655197244
20541185

)
,

The last two coordinates of −H−1J0 are

5114490004637540016
593018923302763639

,
5114490004637540016
593018923302763639

.

Since they are positive we get equality in the conclusion of Lemma 28. Finally,

−1
2
J0H

−1JT
0 =

48101472911555370428804991552
12181311412062878919972215

≈ 3948.793

For the neighbors of S1:

4
�

�
�

�

1 5

3 2

4
�

�
�

�

2 5

3 1

2
�

�
�

�

3 5

1 4

2
�

�
�

�

4 5

1 3

We have:

J0 =
(

4342624176
20541185

,
4342624176
20541185

,
4342624176
20541185

,
1733695536
20541185

,
4342624176
20541185

,
5655197244
20541185

,
2955839412
20541185

)
.

Hence,

−1
2
J0H

−1
1 JT

0 =
56725804836101083569837263821270061643565080096

15568481282665727860752794372508821870798435
≈ 3643.631

Considering S2:

3
�

�
�

�

5 4

2 1

J0 =
(

4342624176
20541185

,
4342624176
20541185

,
4342624176
20541185

,
4342624176
20541185

,
1733695536
20541185

,
1074039432

4108237
,
1074039432

4108237

)
,

The last two coordinates of −H−1J0 are

13458396942990580792
1779056769908290917

,
13458396942990580792
1779056769908290917

,

which are positive. Finally,

−1
2
J0H

−1JT
0 =

45365294744197291555715368032
12181311412062878919972215

≈ 3724.172

Considering the neighbors of S2:
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�
�

�

2 5

1 3

4
�

�
�

�

3 5

1 2

3
�

�
�

�

1 5

2 4

3
�

�
�

�

4 5

2 1

We have:

J0 =
(

4342624176
20541185

,
4342624176
20541185

,
4342624176
20541185

,
1733695536
20541185

,
4342624176
20541185

,
1074039432

4108237
,
2955839412
20541185

)
Hence,

−1
2
J0H

−1JT
0 =

7756149367472421142972629871553505755962112808
2224068754666532551536113481786974552971205

≈ 3487.369

�

Remark 33. In fact S1 and S2 have larger likelihood than any of the 13 other 5-leaf trees. However,
analyzing the likelihood for the 5 trees not considered in the proof of Lemma 31 requires more technical work
since − 1

2J0H
−1JT

0 is maximized at invalid weights for these 5 trees.

We now show how the main theorem of this section easily follows from the above lemma. The proof follows
the same basic line of argument as in Mossel and Vigoda (2005), we point out the few minor differences.

Proof of Theorem 32. For a set of characters
−→
D = (D1, . . . , DN ), define the maximum log-likelihood

of tree T as

LT (
−→
D) = max−→

P ∈ME

L
T,

−→
P

(
−→
D),

where

L
T,

−→
P

(
−→
D) =

∑
i

ln
(
Pr
(
Di | T,

−→
P
))

.

Consider
−→
D = (D1, . . . , DN ) where each Di is independently sampled from the mixture distribution µ.

Let S∗ be S1 or S2, and let S be a tree that is one NNI transition from S∗. Our main task is to show that
LS∗(

−→
D) > LS(

−→
D).

Let
−→
P ∗ denote the assignment which attains the maximum for LS∗(µ), and let

α = min
σ∈Ω5

Pr
(
σ | S∗,

−→
P ∗
)
.

For σ ∈ Ω5, let D(σ) = |{i : Di = σ}|. By Chernoff’s inequality (Janson et al., 2000) and a union bound
over σ ∈ Ω5, we have for all δ > 0,

Pr
(

for all σ ∈ Ω5, |D(σ) − µ(σ)N | ≤ δN
) ≥ 1 − 2 · 45 exp(−2δ2N) = 1 − exp(−Ω(N)).

Assuming the above holds, we then have

LS(
−→
D) ≤ N(1 − δ)LS(µ).

And,

LS∗(
−→
D) ≥ L

S∗,
−→
P ∗(

−→
D) ≥ N(1 − δ)LS∗(µ) + 45δN log(α)



Let γ := L
S∗,

−→
P ∗(µ) − L

S,
−→
P

(µ). Note, Lemma 31 states that γ > 0.

Set δ := min{1,γ/10}
45 log(1/α) . Note, 4−5 > δ > 0. Hence,

LS∗(
−→
D) − LS(

−→
D) ≥ N(1 − δ)γ − Nγ/10 > Nγ/5 = Ω(N).

This then implies that w(S)/w(S∗) ≤ exp(Ω(N)) with probability ≥ 1 − Ω(N) by the same argument
as the proof of Lemma 21 in Mossel and Vigoda (2005). Then, the theorem follows from a conductance
argument as in Lemma 22 in Mossel and Vigoda (2005).

�
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